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ABSTRACT

We extend a multi–level preconditioned solution method for a linear discontinuous dis-
cretizationof the P1 equations in two–dimensional Cartesian geometry to three–dimensional, un-
structuredtetrahedralmeshes. A diffusion synthetic acceleration (DSA) method based on these P1
equations is applied to linear discontinuousSN transport source iterationson tetrahedralmeshes. It
is a full y consistentmethod becausetheP1equationsandthetransportequationarebothdiscretized
with a linear discontinuousfinite elementbasis. Fourier analysesandcomputational results show
the DSA schemeis stableand very effective. We compare the fully consistent scheme to other
“partially consistent” DSA methods.

1 INTRODUCTION

An effectiveDSA schemeis oftennecessaryfor theefficient solution of SN transport source
iteration. It is well knownthat the discretization of the diffusion equation used in a DSA scheme
hasto be “consistent” with the transportequation discretization in order for it to be effective and
robust over a wide range of problems(Alcouffe, 1977, Larsen, 1982).

DSA for linear discontinuousfinite element discretizationsof the SN equations requires a
linear discontinuousfinite element discretization of theP1 equations. This canbe doneby usinga
linear finite elementbasisto representtheP1solution combinedwith away to introducediscontinu-
ities into thediscretization. Because it is aconsistentdiscretization thecorresponding DSA scheme
will beeffective andrelatively few source iterationswill beneeded. However, whensolving large
3D problemson unstructuredgrids,theP1 linear system canbequite large. Iterativesolution of this
system canconvergeslowly, while direct methodsareimpractical.

To addressthis difficulty, DSA schemes have beendeveloped that areonly partially con-
sistent with the underlying discontinuous finite element discretizations of the transport equation
(Wareing, 1991, Adams,1992, Morel, 1993, Wareing, 2001). SuchDSA schemescan be very
efficient. But they canalso be although lesseffective thana consistent methodin just the kinds
problemsfor which DSA is mostneeded. A partially consistent DSA schemecould evenpossibly
cause the transport iterations to becomeunstable. In particular, we will show that a scheme pre-
viously found to be stable in 1D and2D Cartesian geometries (Adams,1992) is unstableon 3D
unstructuredmeshes.



In contrast, our approach is to iteratively solve the linear discontinuousP1 equationsas
efficiently as possible with a robust preconditioner. The two–level preconditioner presentedby
Warsa,et al. (2000) wasshown to be very effective in two–dimensional Cartesiangeometry. In
this work we extend thatpreconditionedsolution technique to 3D unstructured tetrahedralmeshes.
The methodis then implemented asa fully consistentDSA schemefor a linear discontinuousSN
transport code(Wareing, 1996).

Theremainderof thepaperis organizedasfollows. In thenext section wedescribehow we
discretizeandsolve the three–dimensional, discontinuousP1equationswith our two–level precon-
ditioner. Thethird section describesaFourieranalysisthatcanpredict thespectral radius of aDSA
methodon 3D tetrahedral meshes.In the fourth section we compare the Fourier analysis predic-
tions to spectral radius measurementsfrom an implementation code. A moderately sizedexample
problem is usedto measurethecomputational effort of theaccelerated SN solution methods.All the
results compare the fully consistent methodto other partially consistent DSA schemes. Thepaper
concludeswith a few summaryremarks.

2 DISCONTINUOUS P1 EQUATIONS ON TETRAHEDRAL MESHES

In this work, we derive a discretization of theP1equationsto beusedasa fully consistent
DSA methodfor discontinuousfinite element discretizations(DFEM) of theSN transportequation.

In thissection wedescribethediscontinuousdiscretization of theP1equationsontetrahedra.
That is foll owed by a description of the two–level preconditioning approachusing a continuous
discretization of thediffusion equation. Thesection concludes with a brief discussion of theDSA
algorithm.

2.1 The Discretized Equations

We start with thesteady–stateP1systemof equations. In three–dimensional geometry they
are ���������
	���
�������	�������	����������
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The usual particle transport notation is used:
�����
	

representsthe scalarflux (zeroth momentof
the angular flux),

�����
	
representsthe current (first momentof the angular flux). Thesource terms��������	

and
# % ����	

arethezeroth andfirst angular momentsof aninhomogeneoussource,a material
property. Thefirst expressionis thebalanceequation. Thesecond is avector equationwewill refer
to asthefirst momentequation(s). They will consistently bewritten in this order.

Boundary conditions for the P1 equations arespecifiedby separating the flow of particles
through a surface into inwardly andoutwardly directedflows usingpartial currents. The inwardly
directedflow (partial current) of particlesthrough a surfacelocatedat

�+*
canbeexpressedas,�-/."���
*0	1��2�354.�6 4798;: � 3'<= � <> 8@? ���;*�A <> 	�� �B �����;*0	DC �E <= �F�����;*0	
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Similarly, anoutwardly directedflow is givenby,�GIH � ��� * 	J� 2 3 4.K6 47�8;L � 3 <= � <> 8 ? ��� * A <> 	J� �B ����� * 	�� �E <= ������� * 	
(2b)

Assumeno external angular flux of particlesenters through theexternal boundary surface MON >
,

that is, ? ���'PFA <> 	Q��R
for

�S*UT M and

3'<= � <> 8WV R
. Thenthevacuum Marshak boundary conditions

relatethescalarflux andcurrentsontheboundarythroughEq.2aby setting
, -/. ���
*)	J�XR

for
�;*YT M .

Reflectionboundaryconditionsarespecified by setting
, -/. ��� * 	1�$, GZH � ��� * 	

.
We usea linear finite elementbasis on a tetrahedralcell [F\ T >

. A local ordering of the
facesandvertices of a cell is established suchthat the face ] is opposite the vertex ] . The linear
basisfunctionsfunctions ^ - and _ - , ] � � AF(F(F(SA`B

, aredefinedby thelinearbarycentriccoordinates
on a “master” tetrahedron. Thereis a unique mapping between theactual coordinatesof themesh
verticesandthe local barycentric coordinates. More on the useof barycentric coordinatescanbe
found in (Zienkiewicz, 1994). Theirusesimplifiesthederivationandis easily generalizedto higher
order elements(Wareing,2001).

We canconstruct a DFEM for the P1 equations asfollows. The boundary of a tetrahedral
cell a is b [9\ , consisting of eachof thefour facesc!d , e � � A`B

, oppositethefour respective vertices.
With thetrial functions ^gf and _hf , thediscreteproblemis to solve2ji5k;l�m <= �F��nf�o ^9f1pjq C 2Kk;l � f �;� ^9fDpjr ��
 �Fs \ 2Kk;l � f;^9f1pjr � 2jk;l ��� ^9f1pjr (3a)�� 2 i5k l � nf � <= � _�f 	 ptq C �� 2 k l � f �u��� _�f 	 pjr �v
 � s \ 2 k l � f � _�fDpjr � 2 k l # % � _�fDpjr A (3b)

for
� f and

� f , which arelinear approximations, expandedin termsof the basisfunctions ^ - and_ - , to the scalarflux andcurrent on the element[;\ . Note that we have used the divergencethe-
orem to integratetermsinvolving gradients. This is necessaryfor introducing the discontinuous
approximation.

For our linear trial space there arefour vectortrial functions _wf andfour scalar trial func-
tions ^ f . Equations 3 arewritten at eachvertex of every cell andEq. 3b is written separately for
eachof the x , y , and z componentsat thefour cell vertices.Theresultis sixteen equationsin sixteen
unknowns for eachcell in the mesh.Becausethe basisfunctions areunity at their respective ver-
ticesandarezeroat theother three vertices, theunknownson a cell arethevaluesof flux andthree
current componentsat thefour cell vertices,thatis,

� - A ] � � A`B
and

,|{- ,
,�}- , and

,�~- A ] � � A`B
. These

values arediscontinuous,that is, they areseparately defined on eachcell asthe limiting values of������	
and

�����
	
as
����� - from within thecell.

Theintegralsover thefacesof thetetrahedralcells, b [F\ , contain thequantities
� nf and

� nf ,
indicating that they are“boundary” terms. They canbe uniquely definedin termsof the particle
flows through thesurfacebetweentwo adjacentcellsusing discreteversionsof thepartial currents
in Eqs.2aand2b.

The result of the integrationsover the cell boundariesin Eqs.3 involve quantities of the
form c�d � n- and

3 c�d �F� n- 8 at vertex ] . The“areavector” is definedas c!d � <= dF�
d for a facee whose
areais �'d with outward normal

<= d . We can “upwind” and account for boundary conditions or
internal facesusingdiscreteversionsof thepartial currentsasfoll ows. First,addingandsubtracting

(3)



thecontinuouspartial currents we canwrite� nf � E 3 ,�GZH � ��, -+. 8 (4a)m <= ��, nf�o ��, GIH � C�,�-/."(
(4b)

Usingtheserelationshipsfor vertex ] andeithersetting � d �XR
if a facee is internal or on avacuum

boundaryor setting �ud � �
if a facee is on a reflective boundary, thenecessaryquantities arec�d � n- � E c�d m , GIH �d s -�� � � �!d0� ��,�-/.d s -�� � C �!d0� o (5a)m c�d ��, n- o ��� c�d � m ,�GIH �d s - C�, -/.d s - o � � C �!d5� ( (5b)

Theupwinddefinitionsarecompletedby defining thepartial currentsin these lastexpressionsflow-
ing through face e at thevertex ] as , -/.d s - � �B ��� { �- C �E <= d �'�|� { �- (5c),�GIH �d s - � �B � - � �E <= d ��� - A (5d)

where“ ��x�� ” denotesexterior quantities,thatis, thevaluesin theadjacentcell thatsharesface e with
cell a and“across” the facefrom vertex ] . We note that thereareotherpossiblewaysto definethe
upwinding although wewill not discussthatfurther here.

If we orderthe unknownson the meshfirst by the current vector for eachvertex on every
cell, foll owedby thescalarflux for eachvertex on every cell, we canwrite thelinear systemin the� E���E 	

block form ��� � %� � �C � k � � ��� � �� � � ���� � A (6)

wherethesubmatrices
� �

and
� �

areSPD.Thesystemcanalsobewritten in thesymmetricform� � � � � �� k � C � � � � �� � � � � �C � � ( (7)

Finally, we note that it is possible to find a discontinuousdiscretization for the scalar flux alone
if we compute the Schurcomplement, � , of the

� E���E 	
block linear systems above. The Schur

complement is formedby block Gaussian elimination of the row block (which canbe viewedas
eliminating thecurrents in favor of thescalar fluxes).Thecorresponding SPDlinear system is� ��� � � � � � k � � � � �I	!¡ %)� �0¢ ��� � �£��� � � �¤	!¡ %¥� �5¢F¦ (

(8)

On tetrahedrathis reduced system involves
�'§ B

the numberof unknowns of the original full P1
system of equations. This is potentially a tremendoussavings for transport acceleration since only
the scalar fluxes are needed for that purpose. Solution of the reduced system is a topic we are
currently studying.

(4)



2.2 Solution Methods

The discontinuousP1 equations, Eq. 6 or Eq. 7, form an sparse, indefinite linear system,� x � ¨
. To be usedaspart of a DSA scheme, we mustsolve this system efficiently. For large

problemsdirect methods are infeasible, so we useiterative solution techniques to which we can
apply multilevel accelerationmethods.

Our solution techniqueconsists of a two–level iteration. An outerKrylov–subspaceiter-
ative method is usedto solve the discontinuousP1 equations. To computea solution efficiently, a
preconditioner © is needed that adequately alters the spectrum of the matrix

�
. Looselyspeak-

ing, thepreconditionerwill beeffective if theeigenvaluesof thepreconditionedmatrix © ¡ % � are
clusteredandboundedaway from theorigin (Campbell, 1996). In our casewe have alsofoundthat
the convergence rateof the outer Krylov iteration improvesif the condition number, measured by
the ratio of the maximumto minimum singular values of © ¡ % �

, is smallerthanthat of the orig-
inal system.However, this is only a rough indicator of preconditionereffectiveness(Warsa, 2000,
Nachtigal, 1992). The preconditioner, first presentedin Warsa,et al. (2000), hasbeenextended
from two–dimensional Cartesianmeshes to three–dimensionalunstructuredtetrahedral meshes. A
linear continuousfinite element discretization of thediffusion equation is usedto precondition the
outer Krylov iteration. The inner iteration usedto solve the continuousdiffusion linear system is
thesecond level of our two–level solution technique.

This preconditioner wasshownto be effective over a wide range of problemsandis par-
ticularly well–suited to solving problemswhich areoptically thick anddiffusive. This is fortunate
becausethesehappen to be just the kinds of problems for which we would like to solve the P1
equations aspart of a transport acceleration algorithm. Useof the continuous diffusion equation
is suggestedby the observation that discontinuities in the P1 solution disappearandapproachthe
continuous diffusion equation solution asthe problem becomesoptically thick anddiffusive. It is
alsodue in part to the two modelsbeingso closely related, a fact we will exploit in deriving our
two-level preconditioner. In two dimensions,thepreconditionerscaledwell with problem sizebut
convergenceratesof boththeinnerandouter iterationsdegradedfor verythin or veryhighly skewed
cells.

At every iteration, the Krylov solver supplies a residual vector ª requestingthat a vectorz � © ¡ % ª bereturnedto thesolver. In our case, this is computed implicitly. That is, we “solve”©«z � ª withoutexplicitly forming or invertingamatrix © . Thiswill madeclearer if oneexamines
our two–level approachasdisplayedin Algorithm 1. Thealgorithm consistsof threedistinct steps,

Algorithm 1 Two–Level Preconditionerz­¬ R® ¬¯ª C � zz­¬°z �v±­²� ¡ % ®® ¬¯ª C � zz­¬°z ��³ ¡ % ®® ¬¯ª C � zz­¬°z �v± ²� ¡ % ®
giving it the character of a two–stage multigrid V–cycle. The continuous diffusion equation step,
denoted by

³ ¡ %
, residesat the lowest level and is preceded and foll owed by damped pre– and

(5)



post–smoothing iterations,where
²�

is somesimpleapproximation to
�

. It is this entire series of
computations that is implicitly representedby theoperator © ¡ %

.
The continuousdiffusion operator, denoted by

³ ¡ %
in Algorithm 1, must be computed

implicitly aswell. The continuous diffusion equation is discretized with unknownson the mesh
vertices. This linear system is usually of lower dimension ( ´Kµ�¶ , with ·­¸ being the numberof
verticesin themesh)thanthatof thediscontinuousP1equations( ´ %�¹ µ|º , where ·­» is thenumberof
cells in themesh).Thecomputationof

³ ¡ %
thereforeconsistsof three steps: a projection, a matrix

inversion,andan interpolation, written symbolically as
³ ¡ % �¼#h½ ¡ %¥¾

. The matrix
¾

projects
from from ´ %�¹ µ º onto ´1µ�¶ andthematrix

#
interpolatesbackagain.

The projectionsandinterpolation arealsocomputed implicitly. The projections arecom-
puted asa sourcetermfor eachcell–vertex centereddiffusion equation by summinganappropriate
combinationof thediscontinuousscalar flux andcurrent residualsfrom all thecellssurrounding a
vertex. This is discussedin moredetail below. The interpolationssimply assign thesamecontinu-
ousdiffusionequation solution to all thediscontinuousscalar fluxessurrounding aparticularvertex;
thecurrentsareleft unchanged.

The matrix
½ ¡ %

representsthe inverseof the continuousdiffusion equations. The solu-
tion is alsocomputedapproximately usingpreconditionedconjugategradient (PCG)iterationsand
simplediagonalpreconditioning.

Thematrix
²�

is eithertheblock–diagonalmatrixextractedfrom thediscontinuousP1matrix
on a cell–by–cell basis, represented by ¿ , or it is theidentity À . Theformercaseis a block–Jacobi
iteration and the latter is a Richardson iteration. In the block–Jacobi iteration, eachblock is a
(
��Á&�Â��Á

) matrix representing the coupling between all the unknowns (scalar fluxesandcurrents)
on a cell. The block–Jacobi smoothing iterationsare evaluatedby sweepingthrough the mesh
one cell at a time, which could potentially be very efficient in a parallel implementation. The
overall preconditioner with Richardsonsmoothing is simpler but lesseffective than with block–
Jacobi smoothing. In this paper we consideronly

²� � ¿ .
Manipulation of the P1 equations leadsto a source term that representsthe “correct” pro-

jection operator. We startby assuming thediscontinuousunknowns in P1equationsarecontinuous
at thevertices. We then write thebalanceequationsandmomentequations(in vector form) for the
four vertices on somecell a . Theright handsideof theP1equations is setto a “residual” vector of
thediscontinuousoperator; referring to Algorithm 1 this vector is ® � ª C � z , where z is theup-
datedvector from thefirst block Jacobi iteration. Thefour momentequationsareadded togetherto
find anexpressionfor theaverage current vectoron a cell, noting thattheareavectorsof a cell sum
to zeroandthat theoutwardly directedareavectors for a facesharedby two cellsarethenegative
of oneanother. The expression for the average current appears in the four balance equations on a
cell. Inserting thatexpressioninto thebalanceequation for vertex e on cell a givesc�dEgÃ 
 � s \�r \ ��Ä¯ÅÆ -ÈÇ % c -gÉ -uÊ � 
 ��s \;r�\E R Ä E É d � ÅÆ Ë+ÌtÍËÏÎÌ'Ð É�-�Ê � ® d s \ C c�d� 
 � s \
r�\ ��Ä¯ÅÆ -ÈÇ %�Ñ - s \ Ê ( (9)

This is the continuous diffusion discretization with the right handside beingthe projectionof the
discontinuousresidual vector ® , where ® d s \ is theresidual in thescalar flux at vertex e in cell a andÑ d s \ is theresidualin thecurrents.Thecontinuousunknowns,É . , aregiventheglobal ordering of the
meshvertices.Every meshvertex is shared by anarbitrary numberof cellsandEq.9 is computed
for the corresponding local vertex e on eachof those cells. The equations aresummedover the

(6)



surrounding cells,each onecontributing to the coefficientsof the continuous diffusion matrix,
½

,
for the row corresponding to that global vertex. The projection operation in an implementation
follows from this summation.

We mustuseGMRES( Ò ) if either thesystem or thepreconditioneris not symmetric. With
our definition of the projection operator and the simple interpolation methodwe are using, the
preconditioneris not symmetric because

#ÔÓ� ¾ k
. However, if we wish to useMINRES to solve

thesymmetricform of theP1equations, we canimposesymmetryby defining
#Õ� ¾ k

andwe can
ensure that thepreconditioner is positive definite(MINRES requiresthepreconditionerto beSPD)
by scaling theproblemby somenormof thelinearsystem.

2.3 Diffusion Synthetic Acceleration

We now present a brief description of thediffusion syntheticacceleratediterative transport
solution method.

The DFEM discretization of the SN transport equation usesthe samelinear trial functions^9f TvÖ f astheP1equations. We assumeanangular quadrature × <>QØ A`Ù Ø�Ú whoseweights sumto
unity andconsideronly isotropicscattering. For eachquadratureangle

<>QØ
, thetransport discretiza-

tion computesa discontinuous value of the angular flux, Û Ø s - s d , eachvertex e on every cell a . At
sourceiteration Ü , thediscreteform of thetransport equation canbewritten asÝ Ø Û�ÞZß %Ø �X
9* � É Þ ��� Ø A É Þ � Æ Ø Ù Ø Û�ÞØ A (10)

where
� Ø

is an (isotropic) inhomogeneousdistributed source. With DSA, the source iteration is
modifiedasfoll ows: Û ÞZß %Zà¤áØ �X
"* Ý ¡ %Ø � É Þ � Ý ¡ %Ø � Ø

(11a)É ÞZß %Zà¤á � Æ Ø Ù Ø Û ÞZß %Zà¤áØ
(11b)â ÞZß %Zà¤á �X
"* ã k � ¡ % ã m É ÞZß %Zà¤á C É Þ o (11c)É ÞZß % � É ÞZß %Zà¤á � â ÞZß %Zà¤á ( (11d)

The operator
� ¡ %

representsthe solution to the P1 equations. Note that the scalar flux transport
residualsonly contribute a sourceto the balance equations of the P1 equations(the quantity � in
Eqs.6 and7). Sources for themomentequationsaresetto zero(

� ��R
in Eqs.6 and7). Similarly,

the transport scalar fluxesarecorrectedonly by the P1 equation solution for the scalar fluxes. The
matrix

ã
symbolizesthese“projections” and“interpolations”.

3 Fourier Analysis

In this section we presenta three–dimensional Fourieranalysison tetrahedraof theaccel-
erated SN transportsourceiteration.

The underlying Fourier ansatz is madeon a three–dimensional Cartesiangrid, the basic
element of which is a box of dimension ä�x � äWy � ähz . Thebox is dividedinto somenumberof

(7)



tetrahedrawhoseedgesmustline up whenthebasic elements are“translated” in orderto “tile” the
Cartesiangrid with tetrahedra.Theminimumnumber of tetrahedrathatsatisfy this requirementis
six. This basic elementis illustratedin Fig. 1.

∆ å
∆ æ

∆ ç
Figure1: The basic elementfor the Fourier analysis dividedinto six tetrahedra of equal

volume.

Thetetrahedralcellsonthebasicelementarenumberedfrom a � � AF(F(F(SA Á
, eachof thefour

verticesarelocally ordered within eachtetrahedronfrom e � � AF(F(F('A`B
, andthe four quantities at

eachvertex in every cell in thebasicelement areorderedas ] ��B�� a C � 	w� e . A Fourieransatzis
madefor theerrors in thesolutiononthebasicelement.Thisassumesanexponentialrepresentation
for thesolution of theform � d s \ ����	�� <� - � i

�0èé 6 ê 	, {d s \ ����	�� <, {- � i
� èé 6 ê 	, }d s \ ����	�� <, }- � i
� èé 6 ê 	, ~d s \ ����	�� <, ~- � i
� èé 6 ê 	

where ëì � �/í { A í } A í ~ ¢ k is the vector of Fourier wave numbers. The termsfor cells in the basic
element thathave faceson theboundary andwhich exist outside thebasicelement(the “external”
terms

� � { �\ and
� � { �\ in Eqs.5) aredefined in termsof quantities interior to the basic element by

“translating” theappropriateinterior quantitiesby thewidth of thebasic elementthroughtheFourier
ansatz.

Using the symbolic algebra program MAPLE, Eqs.3, together with the upwinding equa-
tions, Eqs.5, arewritten for all cells andall verticeson the basic element. The Fourier ansatz is
inserted into theseequations resulting in a ( î Á&� î Á ) linear system.The matrix for the systemof
equations,denotedby

²�
, is computedin termsof thebasic element thicknessäWx A äWy , and ä�z , the

Fourier wave numbers
í { A í } and

í ~ , andconstant material properties ï (scattering ratio) and

 �

(total crosssection), using expressions generatedsymbolically by MAPLE.
For every discrete ordinateÒ , a Fourieransatz of theformÛ Ø s d s \ ���
	J� <Û Ø s - � i

� èé 6 ê 	
(8)



is alsomadefor the errors in the angular fluxesof the transport equation. Using the sameglobal
ordering for the six tetrahedra in a basic element asusedin the P1 equations, Eq. 10 leadsto the� E B ��E BK	

system ²ð � Æ Ø Ù Ø ²Ý ¡ %Ø ² � ( (12)

This matrix is againcomputed in termsof the Fourier wave number, the basic elementthickness,
andthematerial properties,usingsymbolic expressionsfrom MAPLE. Notethatthespectral radius
of theunacceleratedsource iterations,themaximumeigenvalueof

²ð
, is equal to ï �X
ñ* § 
 �

.
Now, theDSA algorithm in Eqs.11aleadsto the

� E B �òE BK	
matrix ( À is theidentity)²ó �õô ²ð ��
"* ²ã k ²� ¡ % ²ã 3 ²ð C À 8Fö A (13)

whosemaximumeigenvalue is thespectral radius of theacceleratedtransport solution. Thematrix²ã
is a discrete“projection” matrix of dimensions

� î Á���E BK	
.

The Fourier matrix
²ó

is computed with MAPLE by combining symbolic expressionsfor²�
,
²ð

, and
²ã

. It is evaluated for fixed parametersand maximizedover all frequencies using a
Nelder–Meadsimplex algorithm with quadratic surface fitting nearsuspectedmaxima. We found
this algorithm to be essential in searching for the maximumover the three–dimensional space of
wave numbers.

4 NUMERICAL RESULTS

In this section we will investigatethe effectivenessandefficiency of the fully consistent
DSA (FCDSA) schemeusing our solution method for theP1equations.Numerical results arecom-
puted using our implementationcode,ATTILAV2, asdescribedin Wareing, et al. (2001). Theoret-
ical predictionsof thespectral radius arecomputedusing the results of theFourier analysis of the
previoussection.

In the results that follow, Fourier analysis predictions and measurementsof the spectral
radius will be given for theFCDSAscheme.They will becompared to those of thepartially con-
sistent DSA methodof AdamsandMartin, called theModified Four StepMethod(M4S) (Adams,
1992). In all thecomputations reportedhere, we useAlgorithm 1 with

²� � ¿ to solve Eq.7 using
GMRES. Notethatsamealgorithm canbeused to acceleratetheM4S DSA equations.

ATTILAV2 currently usesa partially consistentDSA schemedevelopedby Wareing, et al.
(1991), which we refer to astheWLA (Wareing, Larsen, andAdams)method. Although we have
notperformedFourieranalysisof thismethod, wewill report measuredvaluesof thespectral radius
sinceWLA DSA is availablein theimplementation code.

For isotropic scattering, we anticipatethefull y consistentmethod will bestable for all cell
widthsandcell aspect ratios.

In Table1 we comparethe spectral radiuspredicted by Fourier analysis to the measured
spectral radiususing theATTILAV2 transport codefor a scatteringratio ï �XRt( î�î�î�î andtotal cross
section


 � � � (ø÷
cm

¡ %
. The results are tabulated for representative cell widths (in termsof the

sizeof thebasic element “box” ) in order of decreasingaspectratio ù . Theaspect ratio measureis
computed asthe threetimesthe ratio of the inscribed to circumscribed spheres. It is lessthanor
equal to one, attaining its maximumfor a tetrahedron with edgesof equal length andapproaching
zeroasthetetrahedrabecomemoredistorted(Liu, 1994). Theminimumaspect ratio, ù Ø -/. , of the
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six tetrahedrain thebasicelement is listed in the table. Themeasuredspectral radius is computed
on a fixed

�uú � ú � úg	
grid of boxes,eachdividedinto six tetrahedra, for a total of 3072cells in the

problem. Theouterproblem dimensionsarevariedto alter theaspect ratio of the tetrahedral cells;
for example,to have a basicelement of size

� E (ûR
cm

�Â� (ûR
cm

� ÷j(ûR
cm

	
, the problem domainisx T � RtA ��Á cm� A y T � RtA!ú cm� A z T � RtA`BgR cm� . Boundary conditions on the bottom, left, andback

facesof the problemarereflective, theothersarevacuum. Sourcesaresetto zeroandtheangular
fluxesare initialized randomly and the scalar fluxesarenormalized to the total scalar flux in the
problem aftereachiteration. We usean q Å triangular, Chebyshev-Legendre(TCL) quadrature and
a relative convergencecriterion of

� R ¡ Å for the inner iterations. We usea toleranceof
� R ¡�ü

for
the PCGiterations on the continuousdiffusion equations in Algorithm 1. The spectral radius is
measuredastheratio of thechangein thediscrete L2 normbetweensuccessive iterations,reported
at theendof 100iterations.TheWLA spectral radiusis reportedafter300iterations.

Theresults in Table1 indicatethat thefully consistentDSA methodis stable andeffective
whereasthepartially consistent methodof AdamsandMartin canbeunstablewhentheaspect ratio
is small. The measured spectral radius is, as expected, lessthan the Fourier analysis prediction
becausethere is leakagefrom thevacuum boundaries. TheM4S andWLA methodsshow a strong
dependence on cell aspect ratio and cell thickness. The M4S method becomesunstable as the
aspect ratio decreases. This is an unexpectedresult since the initial verification of the methodin
one–and two–dimensionsdid not indicateany instability (Adams,1992). The spectral radius of
theWLA methodincreasesastheaspect ratio decreases. However, we want to emphasize that this
is for a scattering ratio very closeto unity and in general the methodis very effective when the
scatteringratio is not soclose to one.Nonetheless, in applicationsany degradationin effectiveness
of theWLA DSA schemeis oftencompensatedby its computational efficiency. Thefully consistent
methodremains effective over therange of cell aspect ratios.

Table1: Fourier analysis prediction andcomputationally measured spectral radius tabu-
lated asa function of tetrahedralcell aspect ratio.

FCDSA M4S WLAý"þDÿ�� ��� ��� ��� Measured Analysis Measured Analysis Measured

0.632 1.0 1.0 1.0 0.2171 0.2215 0.5036 0.5298 0.6542
0.562 2.0 2.0 3.0 0.1808 0.1706 0.5632 0.5851 0.8441
0.487 1.0 1.0 2.0 0.2092 0.2062 0.6138 0.6420 0.7877
0.421 2.0 2.0 5.0 0.1768 0.1714 0.6704 0.7043 0.8975
0.370 2.0 1.0 3.0 0.2044 0.2066 0.9156 0.9586 0.8461
0.327 3.0 1.0 3.0 0.1982 0.2008 1.0315 1.0783 0.8470
0.256 2.0 1.0 5.0 0.2100 0.2123 1.0622 1.1173 0.9002
0.170 2.0 1.0 8.0 0.2024 0.2054 1.1590 1.2254 0.9327
0.116 8.0 1.0 10.0 0.1462 0.1482 1.4320 1.4755 0.9452
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Thenext setof results areshownin Fig. 2. We compare the measured spectral radiusand
theFourieranalysisfor thethreeDSA schemesasbefore. In our measurementsthescatteringratio
is againtakento be ï �XRt( î�î�î�î . This time,however, thetotal crosssection is variedlogarithmically
from

E ¡�ü
cm

¡ %
to

E % �
cm

¡ %
andthe basicelement size is fixed

� E (ûR
cm

��� (ûR
cm

� új(ûR
cm

	
for

which the minimum cell aspect ratio is
Rt( �'Ã R

. The measuredspectral radius wascomputed on a
fixed

� Áò��Á��vÁ 	
grid of boxes,eachdivided into six tetrahedra, for a total of 1296cells. The

problem domainis fixedat x T � RtA ��E cm� A y T � RtA Á cm� A z T � RtA`B�ú cm� . Theboundaryconditions
againconsist of threereflective facesandthreevacuum faces. Again weusethe q Å TCL quadrature
andthesameinner iteration convergencecriteria for thediscontinuousP1equations.
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Figure2: Fourieranalysis andcomputationally measuredspectral radiusshown asafunc-
tion of total cross section.

We expect that the spectral radius will approachzero for optically thick cells and that it
should approachthe value �� � � Rt( E ÷;B E

in the limit of vanishing cell thicknessfor the TCL q Åquadratureasused in the transportcode(Larsen, 1982, Adams,1993). This valueof �� � is shown
in the figure for comparison. For thin cells, the Fourier analysis approaches the exact result. The
measured results drop off from the exact result becauseof leakageas the problem becomes ex-
tremelythin. Thefull y consistent schemeis stable andeffective for all cell optical thickness. The
M4Smethodbecomesunstable for intermediateoptical thickness.While boththeFCDSAandM4S
methods become increasingly effective asthe problem becomesthick anddiffusive, the effective-
nessof theWLA method degradeswith increasingoptical thickness.

Thelastsetof results comparesthecomputational effort needed to compute anSN solution
with theFCDSAmethodto thatof theWLA DSA scheme.For thisproblem,wesolveaone–group,
steady state,oil well logging tool problem, a 139.7cm tall half cylinder of radius 60 cm, modeled
with anunstructuredmeshof 43,012 cells(Wareing, 1996). Therearetwo He-3detectorsandaunit
sourceof neutronsinsidetheproblem. Theminimumaspect ratio for themeshis 0.1234 while the
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maximumis 0.9996. Theproblemcontains the isotropically scattering materialswhoseproperties
arelistedin Table.2.

Table2: Neutron crosssectionsfor theoil well logging tool problem.

Crosssections(cm��� )
Material Total Scattering

Limestone ������� �!��"$#�%'&��(� �)�*�+&-,.%/�0# %/&.�(�
Iron %1��%/�-� ���$# %'&12 �)� � ��%/"1,3# %/&.�(�

Water 4)�5%'4 6-, �$#�%/&�2 4)�5% %7,.%/�0# %/&�2
He-3 6�� ��6-�1")%8#�%/&)�(� % � & &-"+6-40# %/&.�:9

The number of floating point operations(FLOP) needed to compute the SN solution to a
relativeconvergencecriteria of

� R ¡�ü
in thescalar fluxesonanSGIOrigin 2000processorareshown

in Table.3 for arangeof TCL quadratureorders · . TheFLOPcount is ameasureof computational
effort not affected by memory access issues and is independent of data layout or other system
resourceuse.

The highly scattering, diffusive water–containing regions of the problem brings the unac-
celeratedspectral radius to approximately 0.9916. This is the measured spectral radius for the q Åquadraturewhichused

E�Á�Á ( BJ� � R7;
FLOPto convergein 2234 iterations. TheFLOPcountis roughly

proportional to thesolution time; for comparison,theunacceleratedsolution wascomputed in 215
CPU minutes. Noting that this is only a onegroup problem (the crosssections correspondto the
lowestneutron energygroup in a 47 group library), it is clear that DSA is necessaryfor practical
applications.

Because of the low minimum cell aspect ratio, the M4S DSA methodis unstable. For
example, afterthethird iteration with the q Å quadraturethespectral radiusis 1.5136 andthemethod
never recovers.This observation is independentof quadratureorder.

The table shows that the WLA method is very efficient with eachDSA steptaking a very
small fraction of thetotal solution time. in to theFCDSA scheme. In this case,theDSA algorithm
takes the majority of the computation time. However, becauseit is so effective in reducing the
spectral radius– FCDSA converged in 13 iterations andWLA in 102 – the overall computation
time canbelessthanthemoreefficient WLA methodfor high enough quadratureorder.

5 CONCLUSIONS

We have found that our fully consistentDSA scheme for DFEM discretizations of the SN
equations basedon an analogousDFEM discretization of the P1 equations is stable and very ef-
fective over a wide rangeof cell shapes,dimensionsandoptical thicknesses. For problemswith a
low aspect ratio, we found that the partially consistent M4S DSA schemecanbe unstable on 3D
unstructured grids while the effectiveness of the WLA DSA methoddegradesfor optically thick,
diffusive problems.

Weexpectedthattheincreasedcomplexity of thefully consistentDSA schemecould make
it impractical for many problems. Still, it could be more computationally efficient than the par-
tially consistentWLA DSA methodundercertain circumstances. For example,someproblemsmay
require a high quadratureorder becausethey contain streaming regions while alsohaving regions
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Table3: Floatingpoint operationcounts(in bill ions)for theoil well logging tool problem
for various SN quadrature orders · . Thetotal needed to compute theSN solution
is tabulatedalongwith the counts spentin just the DSA algorithm (percent of
total is in parentheses).

FCDSA WLA
<

Total DSA Total DSA

4 111.4 110.0(98.7%) 13.7 1.683(12.3%)
8 115.4 110.6(95.8%) 41.5 1.684(4.06%)

12 120.6 110.6(91.7%) 85.0 1.684(1.98%)
16 128.2 111.1(86.7%) 144.5 1.684(1.17%)
20 137.1 111.1(81.0%) 219.8 1.684(0.77%)
24 148.0 111.1(75.1%) 310.9 1.684(0.54%)

in the problem that arediffusive. Anotherapplicationwherethe fully consistentmethodcould be
moreefficient thantheWLA schemeis in certain radiative transfer problemsof interestthathave a
scatteringratio very closeto one.

So far we have implemented our methods in serial codes only. Our conclusions could
changewhenwe extendour methodto parallel platforms.

We plan to pursue methods for solving the reduced Schurcomplementsystem for usein
DSA applications. Solving thereducedsystemcouldmake thefully consistentDSA method more
competitive. Thereareapplications other thanDSA that require thefull discontinuousP1solution.
In that case an efficient solution of the reducedsystemcould be usedas part of a very effective
preconditionerfor thefull system.We areplanning to explore this possibility.
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